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Abstract 

Species distribution models (SDMs) are becoming an important tool for marine conservation 

and management. Yet while there is an increasing diversity and volume of marine biodiversity 

data for training SDMs, little practical guidance is available on how to leverage distinct data 

types to build robust models. We explored the effect of different data types on the fit, 

performance and predictive ability of SDMs by comparing models trained with four data types 

for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: 

two fishery-dependent (conventional mark-recapture tags, fisheries observer records) and two 

fishery-independent (satellite-linked electronic tags, pop-up archival tags). We found that all 

four data types can result in robust models, but differences among spatial predictions 

highlighted the need to consider ecological realism in model selection and interpretation 

regardless of data type. Differences among models were primarily attributed to biases in how 

each data type, and the associated representation of absences, sampled the environment and 

summarized the resulting species distributions. Outputs from model ensembles and a model 

trained on all pooled data both proved effective for combining inferences across data types 

and provided more ecologically realistic predictions than individual models. Our results 

provide valuable guidance for practitioners developing SDMs. With increasing access to 

diverse data sources, future work should further develop truly integrative modeling 

approaches that can explicitly leverage strengths of individual data types while statistically 

accounting for limitations, such as sampling biases. 
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1 Introduction 

Species distribution models (SDMs) are an increasingly common tool used to understand 

species distributions and to predict species responses to changing environmental conditions 

(Elith et al., 2008; Guisan and Thuiller, 2005; Araújo et al., 2019). In the marine environment, 

SDMs have become an important tool to study biophysical drivers of habitat use that can be 

readily applied for conservation, spatial planning and fisheries management (Crear et al., 2021; 

Robinson et al., 2017; Araújo et al., 2019). While SDMs for marine species are often built using 

single data types (Grüss et al., 2019), there are a number of fishery-dependent and 

fishery-independent data sources that can be used to expand the scope and spatiotemporal 

scale of modeling efforts (Sequeira et al., 2013; Erauskin-Extramiana et al., 2019). Building 

robust SDMs is particularly important when faced with limited data, the need to understand 

how species will respond to a changing ocean, and to accurately assess exposure to various 

anthropogenic stressors including fisheries exploitation, habitat degradation, and energy 

development. Increasing human use of marine resources, climate variability and change, and 

limitations in data availability and scope require exploring best practices for leveraging 

multiple data types in marine conservation and management. 

In addition to the typical fisheries datasets, such as vessel logbooks and fishery 

observers, a number of fishery-independent datasets have been developed that capture 

marine species occurrence, primarily as a product of targeted research or management efforts. 

Fishery-independent datasets include specific survey efforts, such as aerial or shipboard 

transect or trawl surveys (Di Sciara et al., 2015; Becker et al., 2019; Abrahms et al., 2019; 

Friedland et al., 2021), as well as electronic telemetry tags that track animal movement (e.g. 

Block et al. 2011, Queiroz et al. 2019). Electronic tags, in particular, represent species habitat 

use independent of fishing effort and are thus useful for representing the unbiased habitat use 

and environmental niche of tracked individuals. Despite the relatively high cost and low 

sample sizes, these datasets are growing and becoming increasingly available (Hussey et al., 

2015), but guidance on best practices for building SDMs across disparate data types is lacking. 
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Here we develop a use-inspired comparison of SDMs built with four types of 

fishery-dependent and fishery-independent occurrence data using a heavily-exploited pelagic 

fish, the blue shark (Prionace glauca), as a model species to inform spatial management 

measures in a changing ocean. We use conventional marker tag, fishery observer, 

satellite-linked electronic tag, and pop-up archival tag data to fit data-specific SDMs in a 

comparative framework to inform important decisions in the model development process and 

identify tradeoffs associated with each data type. In addition to understanding differences 

among SDMs using a suite of validation and performance metrics, we tested the impact of 

data pooling and generating model ensembles for maximizing model utility and prioritizing 

model development in real-world applications. 

2 Methods 

2.1 Model species 

Blue sharks occupy productive nearshore habitats in the North Atlantic Ocean during summer 

and fall (Carey and Scharold, 1990) and make extensive offshore migrations into the Gulf 

Stream and subtropical waters during winter (Campana et al., 2011; Vandeperre et al., 2014; 

Braun et al., 2019; Kohler and Turner, 2018; Queiroz et al., 2019). Blue sharks are typically 

caught as bycatch in longline fisheries that target swordfish and tunas, as well as recreational 

fisheries for large pelagic species (Aires-da Silva and Gallucci, 2007; Kohler and Turner, 2018). 

This species is also the target of a number of research efforts using electronic tags to study 

behavior and ecology across multiple ecosystems (e.g. Vandeperre et al. 2014; Braun et al. 

2019). The relative abundance and widespread distribution of blue sharks results in a diverse 

set of occurrence data available for species distribution modeling (Druon et al., 2022), thus 

enabling evaluation of the data types and the associated model development process. 
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2.2 Fisheries-dependent datasets 

2.2.1 Marker tag 

We obtained marker tag data from the International Commission for the Conservation of 

Atlantic Tunas (ICCAT) Secretariat tag database (https://iccat.int/en/) for blue sharks in the 

Atlantic Ocean from 1959 to 2019. These marker (e.g. conventional or "spaghetti") tags are 

attached to a fish upon release and may be recorded again if the individual is later recaptured. 

This dataset consisted of 101,714 blue sharks tagged and released across a number of 

commercial and recreational fisheries. A total of 13,653 (∼13%) tagged individuals were 

recaptured, yielding a total of 115,367 blue shark daily presence locations. The releases were 

dominated by three main gear types: 66% (n=67,085) were from rod and reel fisheries, 19% 

(18,826) from unclassified gear codes and 13% (13,022) from longline fisheries. Five gear types 

comprised the majority of marker tag recoveries: 34% (n=4,558) from longline, 21% (n=2,872) 

from rod and reel, 21% (n=2,806) from purse seine, 13% (n=1,728) from baitboat and 9% 

(n=1,197) from unclassified gear codes. These data were filtered to remove duplicate IDs and 

points on land, and only one tag event was retained for each day within a 0.01◦ grid to reduce 

autocorrelation structure in the data (Brodie et al., 2018a). The filtering steps retained 36,840 

combined releases and recoveries in the North Atlantic during the oceanographic model time 

period (1993-2019) and were biased toward the NE U.S. shelf (Fig. 1a) during summer. 

Significant releases and recoveries occurred across the main footprint of the longline fleet in 

this region, spanning the area of impact of the Gulf Stream along the southeast U.S. and east of 

Cape Hatteras to the Azores and northern Europe. 

2.2.2 Fisheries observer 

The U.S. Atlantic pelagic longline fishery primarily targets swordfish (Xiphias gladius) and 

yellowfin tuna (Thunnus albacares). An at-sea observer program has been in place for this 

fishery since the early 1990s whereby independent observers catalog gear and catch 
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information for every set made on ∼10-15% of longline fishing trips (Beerkircher et al., 2002; 

Crear et al., 2021). These observer data were used to represent blue shark presence (catch) and 

absence through the spatial extent of the fishery concentrated in the northern Gulf of Mexico, 

along the east coast of the U.S. and along the southern and eastern edges of the Grand Banks 

(Fig. 1b). A total of 22,890 pelagic longline sets conducted between 1993-2019 were used in the 

analysis. A total of 8,057 and 14,833 sets recorded blue shark presence and absence, 

respectively. 

2.3 Fisheries-independent datasets 

2.3.1 Satellite-linked electronic tag 

Satellite-linked tags (model SPOT, Wildlife Computers) were deployed on 70 individuals across 

a number of study sites in the North Atlantic, resulting in 6,430 unique individual tracking days 

over 12 years (2006-2018; Fig. 1c). Tags were attached to the dorsal fin of blue sharks in a 

manner similar to Braun et al. (2019). When at the surface, a wet-dry switch on the tag 

activated transmission to Argos satellites and a Doppler-based geoposition was calculated for 

the shark with associated location error (typically < 10km, Lopez et al. 2014). Resulting 

locations were then filtered using a speed filter (10 ms−1) to remove unrealistic locations and 

regularized to daily location estimates by fitting a state-space model and predicting at daily 

time steps (R package foieGras, Jonsen et al. 2019, 2020). 

2.3.2 Pop-up satellite archival transmitting tag 

Pop-up satellite archival transmitting (aka "PSAT") tags (models PAT and miniPAT, Wildlife 

Computers) were deployed on 37 individuals in many of the same study locations, resulting in 

5,136 unique individual tracking days over 8 years (2009-2017; Fig. 1d). Pop-up tags archive 

depth, temperature and light level data that are then used to estimate animal movements. 

However, tags that rely on light level for geolocation often exhibit large errors in daily position 

estimates (Nielsen and Sibert, 2007; Braun et al., 2015). We combined light and sea surface 
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temperature measurements using a likelihood framework in a hidden Markov Model (Wildlife 

Computers "GPE3" geolocation software) which has been shown to provide realistic 

movement estimates to within <1◦ longitude and ∼1-2◦ in latitude, particularly when datasets 

are high quality and target species are surface-oriented (Braun et al., 2018a). Fitted models 

provided daily location estimates and associated uncertainty for each tagged individual over 

the tag deployment period. 

2.4 Environmental data 

We included 10 environmental variables as potential predictor variables in the SDMs, which 

consisted of two static variables, seven dynamic surface variables and one dynamic subsurface 

variable to better represent the three-dimensional environment of this highly migratory 

species through time (Brodie et al., 2018b). The dynamic environmental data were sourced 

from the Global Ocean Physics Reanalysis (GLORYS, Copernicus Marine Environmental 

Monitoring Service; Lellouche et al. 2018). GLORYS is a global, data assimilating ocean model 

with daily outputs at 1/12◦ (∼9km) horizontal resolution representing 50 vertical levels. The 

data assimilating nature of the model allows for regular data-driven updates to model 

predictions from in situ platforms and remote sensing observations that ensure realistic model 

outputs. The seven dynamic surface variables included: 1) sea surface temperature (SST; in ◦C) 

and 2) its spatial standard deviation (SST_sd; calculated over a 0.25◦ square), 3) sea surface 

height (SSH; in m) and 4) its spatial standard deviation (SSH_sd; calculated over a 0.25◦ 

square), 5) sea surface salinity (SSS; in PSU) and 6) its spatial standard deviation (SSS_sd; 

calculated over a 0.25◦ square) and 7) eddy kinetic energy (EKE; in m s2). The dynamic 

subsurface variable, mixed layer depth (MLD; in m), was output from the model and used here 

as an index of water column structure. The two static variables included bathymetry (ETOPO1 

obtained from https://www.ngdc. noaa.gov/mgg/global/global.html, coarsened to 1/12◦; in 

m) and rugosity (calculated as the spatial standard deviation of bathymetry over a 0.25◦ 

square; in m). Each corresponding environmental value extracted from the 
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presence/absence/pseudo-absence locations and times for each data type was included in the 

final dataframe. All environmental grids used the GLORYS native spatial (1/12◦) and temporal 

(daily) resolution. 

2.5 Species distribution models 

The probability of species presence was modeled for each data type as a function of 

environmental variables using a boosted regression tree (BRT) framework (dismo R package, 

Elith et al. 2006). BRTs are non-parametric and use boosting (a numerical optimization 

technique) to determine optimal partitioning of variance. One of the advantages of using BRTs 

is their ability to handle correlation and collinearity effects of the environmental variables so a 

priori assessment of predictor variables is not needed (Elith et al., 2006). BRTs were fitted using 

a Bernoulli family appropriate to the binary nature of the response variable (presence / 

(pseudo)absence) and a fixed number of 2,000 trees with a learning rate of 0.005, a bag fraction 

of 0.75, and tree complexity of 5. Elith et al. (2008) present a thorough discussion of 

hyper-parameter tuning, therefore we fix these parameters here to isolate the effects of the 

different data types and our focal "treatments" (see below). The resulting models describe 

species-specific habitat suitability as continuous values ranging from 0 to 1. 

2.6 Exploratory treatments: sample size, spatial extent, absences 

In any SDM application, practitioners are faced with a number of decisions during model 

development that may impact the resulting model skill and applicability to the desired use 

case. We used the different data types to test the impact of three important aspects of our 

model framework: sample size, spatial extent, and representation of absences. To explore the 

effects of different sample sizes, models were trained with the maximum sample size available 

for each data type and then subsequently sub-sampled to 4,000 and 1,000 presences for 

subsequent model re-fitting. 

We also explored how differing spatial extents affect model fit and performance. For our 
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example use-case, we sought to build SDMs that could be predicted under climate change 

scenarios for the Northwest Atlantic Ocean. Therefore, our spatial extent of interest was the 

footprint of a down-scaled global climate model that spans from the Caribbean to the Grand 

Banks (Alexander et al., 2020), approximately equivalent to the extent of the fishery observer 

data and relatively restricted compared to the widespread coverage across the North Atlantic 

as represented by the other three data types. For spatial extent treatments, a model was trained 

for each data type with all available presence observations from the full spatial extent of each 

data type. Each data type was then subset to a common, limited spatial extent in the Northwest 

Atlantic within the spatial extent of the climate model as an example use-case. A second set of 

models for this treatment was then trained with the presence observations for each data type 

from this limited spatial extent. We subsequently compared predictions from the full extent 

and limited extent models within the spatial extent of the down-scaled climate model to 

understand the potential impacts of including training data from outside the study area. 

A fundamental challenge of many data types for habitat modeling is that they are 

presence-only, and thus cannot provide information on animal absence. A number of 

techniques have been developed to simulate data representing where individuals were likely 

absent, often termed pseudo-absences (Barbet-Massin et al., 2012). These approaches include 

simple background sampling to more complex, biased sampling such as generating simulated 

animal movement trajectories using null animal movement models (Hazen et al., 2021; Pinti 

et al., 2022). For all datasets, we generated pseudo-absences using background sampling 

methods. Background sampling was performed by randomly drawing, without replacement, 

from the spatial extent of a given individual track from an electronic tag (background track 

sampling) or from the extent of the full dataset (background extent sampling). For electronic 

tags only, additional pseudo-absences were generated using correlated random walk 

simulations. To simulate realistic tracks and sample pseudo-absence locations, we conducted 

ten correlated random walk simulations per individual in each electronic tag dataset following 

Hazen et al. (2021). The fishery observer dataset does include observed fishing effort where 
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blue sharks were not detected, but many of the fishing sets that recorded "absences" occurred 

in areas that were likely suitable blue shark habitat despite no blue sharks being captured, 

presumably due to imperfect sampling as a function of gear-specific catchability. Thus, we 

also simulated pseudo-absences using the background method for the models fit with fishery 

observer data to compare to the "true" absences observed in these data. In all cases, dates 

were assigned to pseudo-absence locations by randomly drawing from the possible dates in 

the corresponding presence dataset. Simulated pseudo-absences were compared against all 

available presence data from all data types to avoid generating pseudo-absences for which a 

corresponding presence occurred in that month (regardless of year) and 0.1◦ grid cell (∼10 km). 

Resulting pseudo-absence locations were randomly sub-sampled to generate a 1:1 

presence/pseudo-absence dataset for each model training application. 

Finally, we also explored two methods for combining data in SDMs. Pooling of data is 

common in species distribution modeling (Fletcher et al., 2019), especially when using 

opportunistic, presence-only data collated from multiple sources (Domisch et al., 2016). We 

created a pooled, all data model that was trained with all presences and associated 

pseudo-absences (from background sampling) combined across data types. Ensemble 

modeling techniques are also regularly applied to combine predictions across data types or 

model frameworks (Araújo and New, 2007). Thus, we also created an equal-weight, mean 

model ensemble that averaged across the predictions from each of the four data-specific 

models; in this case, each of the data-specific models relied on background pseudo-absence 

generation. 

2.7 Comparing model performance 

We evaluated model performance across three dimensions: explanatory power, predictive skill 

and ecological realism. Explanatory power indicates a models ability to explain the variability 

in a given dataset and was evaluated using percent explained deviance (R2). Predictive skill 

indicates how well a model prediction can discern different actual outcomes (Norberg et al., 
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2019) and was evaluated with Area Under the Receiver Operating Characteristic Curve (AUC). 

These metrics were calculated using 10-fold cross-validation (Abrahms et al., 2019). We also 

calculated the sensitivity and specificity of each model (caret package for R, Kuhn 2015) that 

represent the proportion of true presences and true absences, respectively, correctly predicted 

by the model. Daily model predictions were generated for the full spatial extent of the data and 

predictions were classified as present when predicted suitability was greater than the 75% 

quantile of a given prediction surface and considered absent when less than the 25% quantile. 

We quantitatively assessed ecological realism for each model against its training data (i.e. 

in-sample) using median predicted habitat suitability at presences and pseudo-absences and 

qualitatively assessed realism using expert opinion of an example daily prediction for each 

model. The same quantitative approach was used for assessing each models predictive 

capacity (and thus ecological realism) against independent presence data (i.e. all true 

presences) from the three other data types (e.g. fisheries-observer SDM used to predict 

presences from the three tagging datasets; repeated for all SDMs). Finally, we used pairwise 

correlation to quantify spatial variability among model predictions. We calculated Pearson’s 

correlation coefficient in each grid cell by comparing monthly predictions (1993-2019; n=324) 

for each pair of data-specific models. For example, all monthly predictions from the marker 

tag model in a given grid cell were compared against all monthly predictions from the satellite 

tag model in the same grid cell by calculating the correlation between model predictions. 

3 Results 

After quality control and temporal filtering (1993-2019) to match available environmental data, 

we selected 56,240 presence observations for blue sharks in the North Atlantic from the 4 data 

types (Fig. 1). Our treatments identified a spectrum of model sensitivity to the different 

manipulations. The impact of successive reductions in sample sizes available for model 

training were minor based on metrics representing explanatory power, predictive skill and 
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ecological realism (Table 1) and almost indiscernible among most example predictions (Fig. 2). 

In spatial extent manipulations, metrics for explanatory power, predictive skill, and ecological 

realism were relatively invariant for the three datasets that spanned the North Atlantic (marker, 

satellite and pop-up tags) and, in some cases, suggested minor improvements in model 

performance when spatial extent of the training data was limited to the NW Atlantic (Table 2, 

Fig. 3). In contrast, the performance of fishery observer models decreased across all metrics 

when comparing the full to limited spatial extent of training data. 

Among the three treatments (sample size, spatial extent, representation of absences), 

manipulations in how absences were represented demonstrated the most significant impact 

on data-specific model performance. For both types of electronic tag data, pseudo-absences 

were either drawn from correlated random walk (CRW) simulations, randomly sampled from 

the extent of individual tracks (track extent) or randomly sampled from the extent of the full 

dataset pooled across individuals (background extent). In both cases, sampling 

pseudo-absences from the background extent resulted in the best performing model across all 

metrics compared to the track extent and CRW (Table 3). Among the two poorer performing 

pseudo-absence methods for electronic tag data (i.e. track extent and CRW), track extent 

pseudo-absence sampling consistently resulted in better predictive performance against all 

presence data across the four data types but within-sample metrics indicated slightly 

improved model performance using CRW-generated pseudo-absences (Table 3). The example 

predictions for the two electronic tag data types suggested the three pseudo-absence 

techniques resulted in significantly different predicted habitat suitability, with background 

extent sampling likely resulting in the most realistic predictions (Fig. 4). The background 

sampling of pseudo-absences also resulted in the most ecologically realistic predictions 

compared to models fit with "true" absence data in the observer dataset, despite the model 

performance metrics being largely invariant across absence and pseudo-absence based 

models for the observer data. For example, "true" absence models for the fishery observer 

dataset predicted high habitat suitability in the subpolar North Atlantic and subtropical gyre 
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for the example prediction day which contrasted with the almost complete absence of suitable 

habitat in these areas as predicted by the pseudo-absence based model (Fig. 4). The observed 

divergence across model predictions and, in some cases, between model validation metrics 

and ecological realism of model predictions (e.g. observer absence and pseudo-absence 

models, Table 3 & Fig. 4) highlights the utility in having experts assess the realism of model 

predictions in addition to commonly used model validation metrics. 

Model performance also varied across data-specific models, with the marker tag model 

exhibiting the highest explanatory power and best predictive skill metrics (Table 4). Both 

fishery-dependent models indicated high performance metrics relative to fishery-independent 

models and resulted in spatially-constrained suitability in example predictions (Fig. 5, Table 4). 

In contrast, fishery-independent models predicted more widespread suitable habitat during 

the example July prediction; however, both satellite tag and pop-up tag-based models 

demonstrated better sensitivity when predicting to independent, out-of-sample presence data 

(Fig. 6). The marker tag model exhibited particularly high sensitivity predicting to both types 

of fishery-dependent presence observations, while the observer model indicated the lowest 

sensitivity of any model-data combination when predicting to the marker tag dataset. In 

contrast, the models trained with fishery-dependent data had higher specificity when 

predicting to true absences in the observer data. 

Pairwise linear correlations among each model’s prediction highlights where each pair 

of data-specific models tend to agree and disagree (Fig. 7). In general, there is large-scale 

agreement among models throughout the Slope Sea and along the U.S. East Coast and Gulf of 

Mexico. The most disagreement across models is apparent in the subpolar North Atlantic (Fig. 

7a-c) and in subtropical waters east of the Mid-Atlantic Ridge. Overall, the model fit to all 

available presence data and the model ensemble (mean of each data-specific model 

prediction) provided similar example predictions (Fig. 5) and sensitivity when predicting to all 

available presence observations (Fig. 6). However, the data-pooled model and ensemble 

differed significantly in their in-sample predictive performance (Table 4), likely as a product of 
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the ensemble predictions representing the mean suitability prediction across four 

data-specific models that were at times strongly divergent (Fig. 7). 

4 Discussion 

Species distribution models are an important tool to understand how species relate and 

respond to changing ocean conditions. Using data from a wide-ranging marine species, we 

found that inherent biases associated with both fishery-dependent and fishery-independent 

datasets, including spatial and temporal biases that arise from disproportionate sampling (e.g. 

fishing or tagging effort), must be considered when building models. Fishery-dependent 

datasets can be an effective and large-scale source for observations of marine species (e.g. 

Brodie et al. 2018a; Arostegui et al. 2022). Despite the broad spatial extent and temporal 

coverage, models trained on these data are often influenced by non-random spatial and 

temporal distribution of fishing effort (e.g. Kroodsma et al. 2018). While both the marker tag 

and observer-based models were characterized by the highest model evaluation metrics, their 

performance when predicting to the fishery-independent datasets was generally poor, 

presumably as a result of heavily-biased sampling relative to environmental gradients (Baker 

et al., 2022). These results suggest that fishery-based models can reliably predict where blue 

sharks interact with specific fisheries (Stock et al., 2020; Crear et al., 2021). In contrast, the 

fishery-independent models exhibited generally lower evaluation metrics but were more 

broadly robust in their predictive performance and ecological realism, suggesting they may 

more accurately represent the realized environmental niche and geographic distribution of 

blue sharks beyond the footprint of the fishery. This distinction regarding the relative strengths 

of different data types may have even greater relevance for model projections to understand 

how species’ distributions and their interactions with fisheries may shift under climate change 

(Karp et al., 2023). 

In contrast to fisheries-dependent data, fisheries-independent electronic tags are 
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critical for species that are rarely captured in fisheries or surveys and are otherwise 

data-limited with respect to their distribution. Archival, pop-up tags rely on ad hoc methods to 

estimate most probable movements of tagged animals (accuracy ≥1◦, Nielsen and Sibert 2007; 

Wilson et al. 2007; Musyl et al. 2011; Braun et al. 2015, 2018b), whereas satellite-linked tags rely 

on communications to satellites at the surface, resulting in higher location accuracy (±5 km, 

Jonsen et al. 2020). This difference in accuracy between tag types suggests satellite-linked tags 

may provide superior occurrence data for SDMs; however, we found that the more error-prone 

observations from pop-up tags improved model performance. For both types of 

fishery-independent data, the environment was sampled for each presence location as the 

mean over the area encompassed by the estimated daily location ± the 95% confidence 

interval around that location. This approach explicitly accounts for location uncertainty and 

results in some averaging of environmental metrics over a broader area for the pop-up tags 

(due to higher uncertainty) compared to the specific environment sampled for the more 

accurate satellite tags. The improved model performance in our results is likely, in part, a 

product of smoothing the local environment to be more representative of regional scale 

environmental variability which has been shown to contribute disproportionately to SDM 

predictive performance (Brodie et al., 2021). The potential for environmentally-driven changes 

to drive the likelihood of surfacing behavior (e.g. Sepulveda et al. 2018), which is requisite for 

satellite-linked tag transmission, is likely another contributing factor to this data type 

exhibiting reduced model performance relative to pop-up tags. Models trained on 

satellite-linked tag data are biased to predict where the focal species engages in surfacing 

behavior (Pinti et al., 2022) akin to how fishery-based models are biased to predict where the 

focal species interacts with a fishery. Together, these results highlight important 

considerations for building SDMs with electronic tag data and suggest that relatively 

error-prone locations from archival tags may be suitable, or even superior in some 

applications, for model development. 
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4.1 Treatments: Sample size 

With nearly an order of magnitude range in sample size across data types, we explored the 

impact of sample size on model validation metrics and ecological realism. Several efforts have 

demonstrated varying performance of different modeling approaches at very small sample 

sizes (<100; e.g. Hernandez et al. 2006; Wisz et al. 2008). However, such small sample sizes are 

becoming increasingly rare, particularly for marine species for which practitioners can 

leverage fishery interaction data and/or widespread tagging efforts (Hussey et al., 2015) that 

rapidly yield datasets in the hundreds to thousands. We demonstrate that the modeling 

framework used here was largely insensitive to changes in sample size in the thousands, even 

compared with full sample sizes with >36,000 occurrences. These results suggest that with the 

proper approach to model development, sample size should not inhibit habitat suitability 

models for most marine species, including rare or infrequently observed taxa (e.g. 

Lezama-Ochoa et al. 2020). 

4.2 Treatments: Spatial extent 

Information on species’ occurrence over large scales is a fundamental need for basic and 

applied ecology studies. However, it is often time-consuming and expensive to develop 

survey-quality, large-scale species distribution datasets. Thus, practitioners often leverage 

opportunistic datasets that are available on smaller scales than the desired modeling 

application, when used with appropriate caution, to develop SDMs that can predict outside 

the original spatial extent (e.g. Stirling et al. 2016). While some work has shown that "scaling 

up" relatively small-scale, scientific survey data with opportunistic citizen science data can 

result in improved accuracy and spatial extent of SDMs (Robinson et al., 2020), our results 

suggest that survey-quality data may not be necessary when multiple, complementary, 

large-scale datasets exist, as is common for highly migratory marine species. Our results also 

corroborate previous findings that spatial mismatch between training data and the desired 

modeling application may not inhibit development of robust SDMs. For example, Abrahms 
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et al. (2019) use electronic tag data from blue whales throughout >1,000,000 km2 of the 

California Current to build SDMs that inform high collision risk areas and time periods in the 

∼6,000 km2 Santa Barbara Channel located therein. While the authors did not explicitly test 

the impact of differing spatial extent between the blue whale occurrence data and desired 

modeling outcome, their model predictions proved consistent with independent sightings 

data and generally align with our results that differing spatial extent can be less important than 

other factors in training robust SDMs. 

4.3 Treatments: Absences 

The representation of absences proved the most important manipulation we tested during 

model development. Previous studies have indicated how critical pseudo-absence generation 

can be for modeling with presence-only data (Barbet-Massin et al., 2012; Hazen et al., 2021; 

Pinti et al., 2022). Indeed, our findings align with suggestions by Hazen et al. (2021) that using 

background sampling to generate pseudo-absences results in the best model validation 

metrics and predictive skill. However, they also highlight that at least for their study species 

(blue whale) the expert opinion was that resulting model predictions were not biologically 

realistic compared to methods that leverage important characteristics of animal movement 

(e.g. autocorrelated step length and turn angles) such as the correlated random walk methods. 

In contrast, our blue shark models indicated that background sampling resulted in the best 

model metrics and most realistic models for this generalist species, highlighting the potential 

role of niche separation in presence versus pseudo-absence training data (O’Toole et al., 2021) 

and suggesting species-specific habitat specificity may be an important topic for future study. 

The improved performance of fishery observer models trained with background 

pseudo-absences rather than "true" absences highlights the need to account for variable 

catchability of focal species when predicting their occurrence. Catchability is the efficiency of 

fishing gear in sampling a species’ abundance and can change as a result of varying 

environmental conditions and fishing operational characteristics. Failing to account for 
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catchability can obscure patterns in occurrence (Maunder and Punt, 2004). Most notably, the 

degree of vertical overlap between fishing gear and a species’ habitat use modulates 

catchability. The diel change in depth distribution of many highly migratory marine species 

alters their susceptibility to being captured at a given depth (Ward and Myers, 2005), as does 

environmental variation in the water column that restricts species to near-surface waters or 

facilitates their increased occupation of deeper waters (e.g. Prince and Goodyear 2006; 

Arostegui et al. 2022). Similarly, modifications in fishery operations (e.g. changed hook and/or 

bait type) may also alter catchability (e.g. sea turtles and common mola – Gilman et al. 2006; 

Arostegui et al. 2020) and can impact sympatric species in different ways (e.g. bigeye tuna 

versus porbeagle shark – Foster et al. 2012). Presence/absence data from fishery catches is, 

thus, more appropriately considered as detection/non-detection data due to the imperfect 

nature of such sampling (sensu MacKenzie et al. 2002). Models trained on fishery observer (or 

other catch) data must standardize for catchability when incorporating "true" absences or use 

pseudo-absences in their place. When catchability bias is unknown or variables contributing 

to catchability are unavailable, a background pseudo-absence approach (with filtering of 

pseudo-absences that conflict with known presences, as used here) may yield more realistic 

predictions. 

4.4 Leveraging diverse data types 

While previous studies have suggested that fishery-dependent and fishery-independent 

datasets can lead to consistent estimates of species’ habitats (Pennino et al., 2016; Karp et al., 

2023), our results suggest that models trained with heavily biased data may significantly 

diverge from less biased datasets, such as those collected with fishery-independent methods. 

Thus, we sought to leverage the diversity among data types to explore how to reconcile the 

apparent differences among models. Combining multiple data sources is becoming 

increasingly common to model species distributions (Fletcher et al., 2019), often to 

supplement limited data (Fletcher et al., 2016) or to alleviate limitations of particular data 
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types (Dorazio, 2014). While our pooled, all-data model demonstrated marginal performance 

from the perspective of traditional evaluation of model skill and ecological realism, the 

predictive performance to both fishery dependent and independent datasets was reasonable 

given disproportionate sample sizes among data types. Data pooling is the most common 

method of combining datasets (Fletcher et al., 2019), likely due to its simplicity, but does not 

account for the different assumptions and biases inherent in each data type. A number of 

studies have indicated empirical support for fitting independent models for distinct data types 

that are then combined through ensemble techniques (Araújo and New, 2007). Our approach 

to ensemble models assumed that the resulting model would better represent the spectrum of 

blue shark ecology from the fishery-independent datasets while still leveraging the 

significantly larger sample size from the fishery-dependent data. Indeed, our results suggest 

that even simple model ensembles may be an acceptable way to combine data for modeling 

species distribution as has been shown for other marine taxa (e.g. blue whale, Abrahms et al. 

2019). Together, our results suggest that ensembles of independent models may be an 

appropriate compromise between: 1) data-rich fishery datasets that reliably predict a species 

fishery interaction probability but are not representative of the full extent of a species’ 

distribution or habitat suitability; and 2) more ecologically-realistic predictions from 

fishery-independent models that tend to be more limited in spatial and temporal coverage. 

Despite the relative success of model ensembles and data pooling shown here, a 

number of issues are apparent in this approach, including inability to explicitly account for 

uncertainty across datasets, leverage species-environment relationships across models, or 

incorporate spatial dependencies. Recent advances suggest that model-based data integration 

may be the most appropriate way to combine data (Fletcher et al., 2019) in order to retain the 

strengths of each dataset while explicitly accounting for data-specific biases (Isaac et al., 2020). 

Given the flexibility in these approaches, there are a number of opportunities for explicitly 

linking inference across datasets such that, for example, species-environment relationships 

can be derived using joint likelihood across diverse data types (Ahmad Suhaimi et al., 2021). 
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Similarly, most SDMs – including those in this study – are spatially-implicit (and simple) in 

that they do not formally incorporate spatial dependencies in the data; although more 

complex in structure, spatially-explicit SDMs achieve greater predictive performance and are 

better suited to addressing management and conservation issues given their enhanced ability 

to represent local conditions (DeAngelis and Yurek, 2017; Domisch et al., 2019; Williamson 

et al., 2022). In applied science (such as spatial planning of marine protected areas), the ability 

to provide the most accurate species’ occurrence predictions and their associated uncertainty 

(especially at local jurisdictional scales) is paramount; such information ultimately is used by 

managers in how they decide to balance the biological, economic, and social outcomes of 

fisheries that have real-world impact on fish and fishers (Anderson et al., 2019; Arostegui et al., 

2021). As integrated and spatially-explicit SDMs continue to gain traction in basic ecology and 

applied management (Zulian et al., 2021), practical guidance and best practices will make 

these approaches increasingly accessible to practitioners. 

4.5 Conclusion 

As SDMs become foundational in ecology, questions of how to use the ever-increasing volume 

of diverse data sets remain. While significant changes in sample size and spatial extent had 

relatively minor impacts on resulting models, our results demonstrate that how absences are 

represented in presence-absence models is a critical consideration in model development that 

can lead to varying model outcomes. Data-specific biases are inherent and in our results were 

clearly manifested in model predictions; these are integral considerations for modeling 

applications, particularly for models built with single data types. If multiple data types are 

available, our results suggest at minimum a comparison across models may illuminate 

important similarities and/or differences that can inform model utility for the desired 

application. We present an ensemble approach that leverages the desired strengths of the 

individual datasets while minimizing the inherent biases of each data type and provides the 

appropriate balance of predictive performance and ecological realism. In our use case, the 
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divergence of the fishery observer model from the models trained with other data types, the 

variability among traditional model evaluation metrics, and the predictive performance of 

fishery-independent models together suggest an integrated approach to model development 

is needed to generate robust SDMs from diverse data types. While statistically reconciling, and 

even leveraging, diverse data types remains challenging for most practitioners, especially in a 

spatially-explicit model framework, increasing access to diverse data sources suggests explicit 

data integration is an important area for future work (Isaac et al., 2020) and will be 

instrumental in expanding and improving efforts to better understand the impacts of climate 

change on marine species. 
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Table 1: Summary of model statistics for sample size manipulations. For each data type, a 

"full" model was built with all available presence observations (1st row of each data type) then 

randomly sub-sampled to smaller sample sizes. For all metrics except prediction at pseudo-

absences, higher values indicate better model performance. 

Explanatory 
power

Predictive 
skill

Data type N R2 AUC

Median in-
sample 

prediction 
at 

presences

Median in-
sample 

prediction 
at 

pseudoabse
nces

Median 
prediction 
at all true 
presences

Figure 
panel

36,840 0.71 0.97 0.98 0.06 0.93 2a
4,000 0.73 0.97 0.98 0.06 0.93 2b
1,000 0.79 0.96 0.97 0.06 0.93 2c

8,057 0.58 0.94 0.91 0.08 0.79 2j
4,000 0.59 0.94 0.90 0.08 0.77 2k
1,000 0.66 0.93 0.90 0.10 0.85 2l

6,430 0.27 0.81 0.64 0.36 0.73 2d
4,000 0.29 0.81 0.64 0.36 0.72 2e
1,000 0.41 0.80 0.67 0.32 0.70 2f

4,913 0.50 0.93 0.79 0.18 0.52 2g
4,000 0.49 0.92 0.78 0.19 0.58 2h
1,000 0.58 0.92 0.80 0.18 0.70 2i

Ecological realism

Observer

Satellite

Pop-up

Marker
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Table 2: Summary of model statistics for spatial extent manipulations. For each data type, a 

model was built with all available presence observations from the full spatial extent of each data 

type (1st row of each data type and see Fig. 1). Each data type was subset to a common, limited 

spatial extent in the Northwest Atlantic as an example study region of interest (2nd row for each 

data type), in this case representing the spatial extent of a downscaled global climate model. 

For all metrics except prediction at pseudo-absences, higher values indicate better model per-

formance. 

Explanatory 
power

Predictive 
skill

Data 
type

Spatial 
extent 

of data
N R2 AUC

Median in-
sample 

prediction 
at 

presences

Median in-
sample 

prediction 
at 

pseudoabse
nces

Median 
prediction 
at all true 
presences

Figure 
panel

Full 36,840 0.71 0.97 0.98 0.06 0.98 3a
Limited 8,950 0.79 0.98 0.97 0.02 0.96 3b

Full 8,057 0.58 0.94 0.91 0.08 0.81 3c
Limited 2,572 0.39 0.85 0.76 0.23 0.59 3d

Full 6,430 0.27 0.81 0.64 0.36 0.77 3e
Limited 2,043 0.46 0.88 0.75 0.22 0.75 3f

Full 4,913 0.50 0.93 0.79 0.18 0.52 3g
Limited 1,593 0.57 0.92 0.82 0.13 0.39 3h

Marker

Ecological realism

Pop-up

Satellite

Observer
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Table 3: Summary of model statistics for "true" absence and pseudo-absence manipulations. 

Models based on observer data were fit with all absences (n=14,833; approx. 1:2 presence to 

absence ratio), sub-sampled true absences (to represent 1:1 presence to absence ratio) and 

pseudo-absences randomly sampled from the background extent of the dataset. The two types 

of electronic tag datasets (satellite and pop-up) were each treated with 3 different pseudo-

absence generation techniques: correlated random walk, sampling from the extent of individ-

ual tracks and background sampling from the full spatial extent (see Methods). For all metrics 

except prediction at pseudo-absences, higher values indicate better model performance. 

Explanatory 
power

Predictive 
skill

Data type
(Pseudo) 
absence 
method

R2 AUC

Median in-
sample 

prediction 
at 

presences

Median in-
sample 

prediction 
at 

pseudoabse
nces

Median 
prediction 
at all true 
presences

Figure 
panel

True (all) 0.57 0.94 0.85 0.05 0.70 4a
True (1:1) 0.58 0.94 0.91 0.08 0.79 4b

Bkgd extent 0.62 0.95 0.93 0.09 0.12 4c

CRW 0.15 0.73 0.57 0.46 0.61 4d
Track extent 0.13 0.70 0.53 0.45 0.71 4e
Bkgd extent 0.24 0.81 0.64 0.35 0.73 4f

CRW 0.17 0.74 0.58 0.45 0.53 4g
Track extent 0.14 0.70 0.54 0.47 0.65 4h
Bkgd extent 0.49 0.92 0.79 0.18 0.66 4i

Ecological realism

Observer

Satellite

Pop-up
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Table 4: Summary of model evaluation statistics for selected, final models for each data type and 

the all data model and model ensemble. *indicates values report the same metric. For all met-

rics except prediction at pseudo-absences, higher values indicate better model performance. 

Explanatory 
power

Predictive 
skill

Data type
Pseudoabsence 

type N R2 AUC

Median in-
sample 

prediction 
at presences

Median in-
sample 

prediction 
at pseudo 
absences

Median 
prediction 
at all true 
presences

Figure 
panel

Marker tags Background 
extent 36,840 0.71 0.97 0.98 0.06 0.93 5a

Fishery observer Background 
extent 8,057 0.62 0.95 0.93 0.09 0.12 5b

Satellite tags Background 
extent 6,430 0.27 0.81 0.64 0.36 0.73 5c

Pop-up tags Background 
extent 4,913 0.50 0.93 0.79 0.18 0.68 5d

All data Background 
extent 56,463 0.52 0.93 0.93* 0.14 0.93* 5e

Ensemble Background 
extent 56,463 NA 0.92 0.67* 0.20 0.67* 5f

Ecological realism
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Figure 1. Presence locations for the marker tags (a), fishery observer data (b), and two 

types of electronic tags (c, satellite and d, pop-up). Marker tags and observer data are fishery 

dependent (a,b), and electronic tags are fishery independent (c,d). Observer data (b) also 

contains "true" absence locations (but see Discussion). Note that grid cells for the fishery 

observer locations that contained < 3 vessels were removed to protect confidentiality. Orange 

triangles in c and d indicate the locations where tags were deployed. 

Figure 2. Predicted habitat suitability for an example day (2019-07-01) showing the 

impact of sample size manipulations for models trained with each data type. Yellow indicates 

highly suitable habitat and blue indicates low suitability. 

Figure 3. Predicted habitat suitability for an example day (2019-07-01) showing the 

impact of spatial extent manipulations for each data type. The first column shows example 

predictions for data-specific models trained with the full spatial extent of each data type (see 

Fig. 1) and predicted to the extent of the downscaled climate model. The second column 

shows example predictions for models trained with occurrence data only from within the 

spatial extent shown. 

Figure 4. Predicted habitat suitability for an example day (2019-07-01) showing the 

impact of absence and pseudo-absence manipulations for each data type. The observer data 

contain "true" absence locations that were all used for the first treatment (a; ∼1:2 presence to 

absence ratio) and were sub-sampled to a 1:1 ratio for the second treatment (b). The third 

treatment (c) used pseudo-absences sampled from the background extent of the observer data. 

The electronic tag datasets (satellite and pop-up) are presence-only and thus require 

pseudo-absence generation. Three methods were tested: correlated random walk (d, g), 

sampling from the extent of individual tracks (e, h) and sampling from the background extent 

of the dataset (f, i). 

Figure 5. Predicted habitat suitability for an example day (2019-07-01) using models 

fitted with each data type, the all data model (panel e) and the ensemble of panels a-d (panel 

f). Yellow indicates highly suitable habitat and blue indicates low suitability. The black grid 
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cells indicate where presence data are available during any July in each dataset. 

Figure 6. Proportion of presences (sensitivity, a) and "true" absences from the observer 

data (specificity, b) correctly predicted by each selected model (Table 4) and dataset 

combination. Model predictions were considered correct when predicted suitability was 

greater than the 75% quantile for presence observations and less than the 25% quantile for 

absences in the observer data. Model ensemble includes the selected model for each data type 

(Table 4), excluding the all data model (i.e. rows 1-4). 

Figure 7. Pairwise linear correlation of monthly predictions during the GLORYS period 

(1993-2019) for each data-specific model. High positive correlation (red) indicates similarity in 

model predictions. High negative correlation (blue) indicates model predictions are in 

opposition. 
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